Description

Guidance utilizing GPS has long been used for various operations in row crop agriculture. However, the high cost of these systems has limited their use in low-input forage and livestock operations. Reduced prices and the availability of used guidance systems have the potential to increase the use of precision agriculture in pastoral settings. In the past, frost seeding often resulted in areas that received no seed and areas that were double seeded. The objective of this experiment was to evaluate the impact of using a guidance system on the uniformity of seed dispersal. This study was conducted at the University of Kentucky’s Research and Education Center, located in Princeton, KY, USA in 2019 and 2021. The experimental design was a randomized complete block with four replications. Four pastures ranging from 2.5 to 4.3 ha were mock seeded using a UTV equipped with GPS guidance technology. The guidance system was initiated, but covered with an opaque bag, and the four pastures were driven by sight alone. This mock seeding process was then repeated utilizing the guidance system. Frost seeding without GPS guidance resulted in a 49% and 21% overlap in 2019 and 2021, respectively. At an overseeding cost of $89/ha and an average overlap of 35%, the cost of a guidance system could be recouped in as little as 48 ha. The results of this study indicate that GPS guidance systems have the potential to improve the uniformity of seed dispersal, thus reducing the cost of frost seeding for producers.

DOI

https://doi.org/10.13023/cx4t-nb05

Share

COinS
 

Improving Frost Seeding Accuracy with an Entry Level GPS Unit

Guidance utilizing GPS has long been used for various operations in row crop agriculture. However, the high cost of these systems has limited their use in low-input forage and livestock operations. Reduced prices and the availability of used guidance systems have the potential to increase the use of precision agriculture in pastoral settings. In the past, frost seeding often resulted in areas that received no seed and areas that were double seeded. The objective of this experiment was to evaluate the impact of using a guidance system on the uniformity of seed dispersal. This study was conducted at the University of Kentucky’s Research and Education Center, located in Princeton, KY, USA in 2019 and 2021. The experimental design was a randomized complete block with four replications. Four pastures ranging from 2.5 to 4.3 ha were mock seeded using a UTV equipped with GPS guidance technology. The guidance system was initiated, but covered with an opaque bag, and the four pastures were driven by sight alone. This mock seeding process was then repeated utilizing the guidance system. Frost seeding without GPS guidance resulted in a 49% and 21% overlap in 2019 and 2021, respectively. At an overseeding cost of $89/ha and an average overlap of 35%, the cost of a guidance system could be recouped in as little as 48 ha. The results of this study indicate that GPS guidance systems have the potential to improve the uniformity of seed dispersal, thus reducing the cost of frost seeding for producers.