Abstract

Background: Bacillum thuringiensis (Bt) toxin produced in Cry1-expressing genetically modified rice (Bt rice) is highly effective to control lepidopteran pests, which reduces the needs for synthetic insecticides. Non-target organisms can be exposed to Bt toxins through direct feeding or trophic interactions in the field. The wolf spider Pardosa pseudoannulata, one of the dominant predators in South China, plays a crucial role in the rice agroecosystem. In this study, we investigated transcriptome responses of the 5th instar spiders fed on preys maintained on Bt- and non-Bt rice.

Results: Comparative transcriptome analysis resulted in 136 differentially expressed genes (DEGs) between spiderlings preying upon N. lugens fed on Bt- and non-Bt rice (Bt- and non-Bt spiderlings). Functional analysis indicated a potential impact of Bttoxin on the formation of new cuticles during molting. GO and KEGG enrichment analyses suggested that GO terms associated with chitin or cuticle, including “chitin binding”, “chitin metabolic process”, “chitin synthase activity”, “cuticle chitin biosynthetic process”, “cuticle hydrocarbon biosynthetic process”, and “structural constituent of cuticle”, and an array of amino acid metabolic pathways, including “alanine, asparatate and glutamate metabolism”, “glycine, serine and theronine metabolism”, “cysteine and methionine metabolism”, “tyrosine metabolism”, “phenylalanine metabolism and phenylalanine”, and “tyrosine and tryptophan biosynthesis” were significantly influenced in response to Cry1Ab.

Conclusions: The Cry1Ab may have a negative impact on the formation of new cuticles during molting, which is contributed to the delayed development of spiderlings. To validate these transcriptomic responses, further examination at the translational level will be warranted.

Document Type

Article

Publication Date

1-18-2017

Notes/Citation Information

Published in BMC Biotechnology, v. 17, 7, p. 1-10.

© The Author(s). 2017

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Digital Object Identifier (DOI)

https://doi.org/10.1186/s12896-016-0325-2

Funding Information

This work was supported by the National Natural Science Foundation of P. R. China (No. 31071943, 318 31272339), the Scientific Research Key Fund of Hunan Provincial Science and Technology Department (No.319 10A054), and Agricultural Science and Technology Innovation Program of China (No. CAAS-ASTIP-2016-IBFC).

Related Content

The data set supporting the results of this article are available in the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/) repositories, SRR2024874, and SRR2024877.

12896_2016_325_MOESM1_ESM.docx (15 kB)
Additional file 1: Table S1.

12896_2016_325_MOESM2_ESM.xls (55 kB)
Additional file 2: Table S2.

Share

COinS