Abstract

Aggregations are widespread across the animal kingdom, yet the underlying proximate and ultimate causes are still largely unknown. An ideal system to investigate this simple, social behavior is the pine sawfly genus Neodiprion, which is experimentally tractable and exhibits interspecific variation in larval gregariousness. To assess intraspecific variation in this trait, we characterized aggregative tendency within a single widespread species, the redheaded pine sawfly (N. lecontei). To do so, we developed a quantitative assay in which we measured interindividual distances over a 90-min video. This assay revealed minimal behavioral differences: (1) between early-feeding and late-feeding larval instars, (2) among larvae derived from different latitudes, and (3) between groups composed of kin and those composed of nonkin. Together, these results suggest that, during the larval feeding period, the benefits individuals derive from aggregating outweigh the costs and that this cost-to-benefit ratio does not vary dramatically across space (geography) or ontogeny (developmental stage). In contrast to the feeding larvae, our assay revealed a striking reduction in gregariousness following the final larval molt in N. lecontei. We also found some intriguing interspecific variation: While N. lecontei and N. maurus feeding larvae exhibit significant aggregative tendencies, feeding N. compar larvae do not aggregate at all. These results set the stage for future work investigating the proximate and ultimate mechanisms underlying developmental and interspecific variation in larval gregariousness across Neodiprion.

Document Type

Article

Publication Date

4-17-2017

Notes/Citation Information

Published in Ecology and Evolution, v. 7, issue 11, p. 3689-3702.

© 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)

https://doi.org/10.1002/ece3.2952

Funding Information

This work was supported by the National Science Foundation (DEB-1257739) to CRL, the Graduate Student Research Award from the Society of Systematic Biologists to JWT2, the Student Research Travel Award from the SysEB Section of the Entomological Society of America to JWT2, and the University of Kentucky to CRL and JWT2.

Share

COinS