Abstract

The rising number of chemicals that humans are exposed to on a daily basis, as well as advances in biomonitoring and detection technologies have highlighted the diversity of individual exposure profiles (complex body burdens). To address this, the toxicological sciences have begun to shift away from examining toxic agents or stressors individually to focusing on more complex models with multiple agents or stressors present. Literature on interactions between chemicals is fairly limited in comparison with dose-response studies on individual toxicants, which is largely due to experimental and statistical challenges. Experimental designs capable of identifying these complex interactions are often avoided or not evaluated to their fullest potential because of the difficulty associated with appropriate analysis as well as logistical factors. To assist with statistical analysis of these types of experiments, an online, open-sourced statistical application was created for investigators to use to analyze and interpret potential toxicant interactions in laboratory experimental data using a full-factorial three-way analysis of variance (ANOVA). This model utilizes backward selection on interaction terms to model main effects and interactions.

Document Type

Review

Publication Date

3-1-2017

Notes/Citation Information

Published in Reviews on Environmental Health, v. 32, issue 1-2, p. 23-26.

©2017 Walter de Gruyter GmbH, Berlin/Boston.

The copyright holder has granted the permission for posting the article here.

Digital Object Identifier (DOI)

https://doi.org/10.1515/reveh-2016-0044

Funding Information 

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number P42ES007380, and by the National Institute of Food and Agriculture, US Department of Agriculture, Hatch project KY007069 under 0220363.

Share

COinS