Abstract

The intermediate dose spill for a stereotactic radiosurgery (SRS) plan can be quantified with the metric R50%, defined as the 50% isodose cloud volume (VIDC50%) divided by the volume of the planning target volume (PTV). By coupling sound physical principles with the basic definition of R50%, we derive an analytical expression for R50% for a spherical PTV. Our analytical expression depends on three quantities: the surface area of PTV (SAPTV), the volume of PTV (VPTV), and the distance of dose drop-off to 50% (Δr). The value of ∆r was obtained from a simple set of cranial phantom plan calculations. We generate values from our analytical expression for R50% (R50%Analytic) and compare the values to clinical R50% values (R50%Clinical) extracted from a previously published SRS data set that spans the VPTV range from 0.15 to 50.1 cm3. R50%Analytic is smaller than R50%Clinical in all cases by an average of 15% ± 7%, and the general trend of R50%Clinical vs VPTV is reflected in the same trend of R50%Analytic. This comparison suggests that R50%Analytic could represent a theoretical lower limit for the clinical SRS data; further investigation is required to confirm this. R50%Analytic could provide useful guidance for what might be achievable in SRS planning.

Document Type

Article

Publication Date

1-25-2021

Notes/Citation Information

Published in Journal of Applied Clinical Medical Physics, v. 22, issue 2.

© 2021 The Authors

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)

https://doi.org/10.1002/acm2.13168

Share

COinS