Abstract

Translational animal models for oral mucositis (OM) are necessary to simulate and assess the bioclinical effects and response in humans. These models should simulate high levels of radiation exposure that leads to oxidative stress and inflammatory‐initiated tissue changes. Hamster models have been extensively studied to observe pathological effects of radiation exposure and help in the development of effective treatments. To successfully evaluate the potential for treatment regimens with consistency and relevance, a radiation‐induced OM hamster model was developed using a clinical linear accelerator utilized by cancer patients daily. The dose exposure to the isolated, everted cheek pouch of a hamster, as well as the progression of injury, pro‐inflammatory marker, histological, and elasticity analyses of the buccal pouch were conducted to verify replicability and reproducibility of the injury model. The findings from this model demonstrated its ability to consistently induce injury and resolution over 28 days using an acute dose of 60 Gy. This model was developed to enhance clinical relevance when evaluating potential efficacious treatments and can now be utilized in efficacy studies to better evaluate developed therapeutics in a preclinical model that is easy to translate to clinical studies.

Document Type

Article

Publication Date

1-26-2021

Notes/Citation Information

Published in Animal Models and Experimental Medicine, v. 4, issue 1.

© 2021 The Authors

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Digital Object Identifier (DOI)

https://doi.org/10.1002/ame2.12148

Funding Information

This work was completed under support through NIH SBIR Phase II Award R44DE023523.

Share

COinS