Abstract

The polyadenylation of messenger RNAs is mediated by a multi-subunit complex that is conserved in eukaryotes. Among the most interesting of these proteins is the 30-kDa-subunit of the Cleavage and Polyadenylation Specificity Factor, or CPSF30. In this study, the Arabidopsis CPSF30 ortholog, AtCPSF30, is characterized. This protein possesses an unexpected endonucleolytic activity that is apparent as an ability to nick and degrade linear as well as circular single-stranded RNA. Endonucleolytic action by AtCPSF30 leaves RNA 3′ ends with hydroxyl groups, as they can be labeled by RNA ligase with [32P]-cytidine-3′,5′-bisphosphate. Mutations in the first of the three CCCH zinc finger motifs of the protein abolish RNA binding by AtCPSF30 but have no discernible effects on nuclease activity. In contrast, mutations in the third zinc finger motif eliminate the nuclease activity of the protein, and have a modest effect on RNA binding. The N-terminal domain of another Arabidopsis polyadenylation factor subunit, AtFip1(V), dramatically inhibits the nuclease activity of AtCPSF30 but has a slight negative effect on the RNA-binding activity of the protein. These results indicate that AtCPSF30 is a probable processing endonuclease, and that its action is coordinated through its interaction with Fip1.

Document Type

Article

Publication Date

2007

Notes/Citation Information

Published in Nucleic Acids Research, v. 35, no. 13, p. 4453-4463.

© 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1093/nar/gkm457

Share

COinS