Date Available


Year of Publication


Degree Name

Master of Science (MS)

Document Type

Master's Thesis


Agriculture, Food and Environment


Plant and Soil Sciences

First Advisor

Dr. Rebecca McCulley

Second Advisor

Dr. Krista Jacobsen


Unintentional nitrogen (N) loss from agroecosystems produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, adoption of conservation agricultural management practices, such as no-till and cover cropping, has increased. This study assessed N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems across a year. Three systems were evaluated: 1) an unfertilized organic system with cover crops Vicia villosa, Triticum aestivum, or a mix of the two; 2) an organic system with a Vicia cover crop employing three fertilization schemes (0 N, organic N, or a cover crop N-credit approach); 3) a conventional system with a Triticum cover crop and three fertilization techniques (0 N, urea N, or organic N). During cover crop growth, species affected N leaching but gaseous emissions were low across all treatments. During corn growth, cover crop and fertilizer approach affected N loss. Fertilized treatments had greater N loss than unfertilized treatments, and fertilizer type affected gaseous fluxes temporally and in magnitude. Overall, increased N availability did not always indicate greater N loss or yield, suggesting that N conserving management techniques can be employed in conservation agriculture systems without sacrificing yield.