Year of Publication
2012
Degree Name
Master of Science (MS)
Document Type
Master's Thesis
College
Agriculture
Department
Plant and Soil Science
First Advisor
Dr. John H. Grove
Abstract
Corn nitrogen (N) applications are still done on a field basis in Kentucky, according to previous crop, soil tillage management and soil drainage. Soil tests, as well as plant analysis for N, are not very useful in making N fertilizer rate recommendations for corn. Recommended rates assume that only 1/3 to 2/3 of applied N is recovered, variability largely due to the strong affect of weather on the release of soil N and fertilizer N fate. Many attempts have been made to apply N in a more precise and efficient way. Two experiments were conducted at Spindeltop, the University of Kentucky’s experimental farm near Lexington, over two years (2010, 2011), using a commercially available active optical sensor (GreanSeekerTM) to compute the normalized difference vegetative index (NDVI), and with this tool/index assess the possibility of early (V4-V6) N deficiency detection, grain yield prediction by NDVI with and without side-dressed N, and determination of the confounding effect of soil background on NDVI measurements. Results indicated that the imposed treatments affected grain yield, leaf N, grain N and grain N removal. Early N deficiency detection was possible with NDVI. The NDVI value tended to saturate in grain yield prediction models. The NDVI was affected by tillage management (residue/soil color background differences), which should be taken into account when using NDVI to predict grain yield. Side-dress N affected NDVI readings taken one week after side-dressing, reducing soil N variability and plant N nutrition. There is room for improvement in the use of this tool in corn N management.
Recommended Citation
Titolo, Donato, "USING AN ACTIVE OPTICAL SENSOR TO IMPROVE NITROGEN MANAGEMENT IN CORN PRODUCTION" (2012). Theses and Dissertations--Plant and Soil Sciences. 11.
https://uknowledge.uky.edu/pss_etds/11