Investigation of Salt Tolerance Mechanisms across a Root Developmental Gradient in Almond Rootstocks
Abstract
The intensive use of groundwater in agriculture under the current climate conditions leads to acceleration of soil salinization. Given that almond is a salt-sensitive crop, selection of salt-tolerant rootstocks can help maintain productivity under salinity stress. Selection for tolerant rootstocks at an early growth stage can reduce the investment of time and resources. However, salinity-sensitive markers and salinity tolerance mechanisms of almond species to assist this selection process are largely unknown. We established a microscopy-based approach to investigate mechanisms of stress tolerance in and identified cellular, root anatomical, and molecular traits associated with rootstocks exhibiting salt tolerance. We characterized three almond rootstocks: Empyrean-1 (E1), Controller-5 (C5), and Krymsk-86 (K86). Based on cellular and molecular evidence, our results show that E1 has a higher capacity for salt exclusion by a combination of upregulating ion transporter expression and enhanced deposition of suberin and lignin in the root apoplastic barriers, exodermis, and endodermis, in response to salt stress. Expression analyses revealed differential regulation of cation transporters, stress signaling, and biopolymer synthesis genes in the different rootstocks. This foundational study reveals the mechanisms of salinity tolerance in almond rootstocks from cellular and structural perspectives across a root developmental gradient and provides insights for future screens targeting stress response.
Document Type
Article
Publication Date
1-5-2021
Digital Object Identifier (DOI)
https://doi.org/10.3389/fpls.2020.595055
Funding Information
This work was supported by the Almond Board of California awards HORT23A, B and HORT25 and the U.S. Department of Agriculture award CA-D-PLS-2132-H to GD.
Repository Citation
Shao, Yuhang; Cheng, Yukun; Pang, Hongguang; Chang, Mingqin; He, Fang; Wang, Minmin; Davis, Destiny J.; Zhang, Shuxiao; Betz, Oliver; Fleck, Chuck; Dai, Tingbo; Madahhosseini, Shahab; Wilkop, Thomas E.; Jernstedt, Judy; and Drakakaki, Georgia, "Investigation of Salt Tolerance Mechanisms across a Root Developmental Gradient in Almond Rootstocks" (2021). Physiology Faculty Publications. 166.
https://uknowledge.uky.edu/physiology_facpub/166
Supplementary material
Notes/Citation Information
Published in Frontiers in Plant Science, v. 11, article 595055.
© 2021 Shao, Cheng, Pang, Chang, He, Wang, Davis, Zhang, Betz, Fleck, Dai, Madahhosseini, Wilkop, Jernstedt and Drakakaki.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.