Author ORCID Identifier

https://orcid.org/0000-0001-9452-6190

Year of Publication

2018

Degree Name

Master of Science (MS)

Document Type

Master's Thesis

College

Pharmacy

Department

Pharmaceutical Sciences

First Advisor

Dr. Björn Bauer

Abstract

Epilepsy affects 3.4 million patients in the USA and is characterized by recurring seizures. The blood-brain barrier is leaky in epilepsy and may contribute to seizure progression but the mechanisms which cause this leakage are not fully understood. We hypothesized that seizures trigger LOX- and COX-mediated blood-brain barrier leakage and that dual LOX/COX inhibition prevents barrier leakage in vivo. To test this hypothesis, we administered either the dual LOX/COX inhibitor licofelone or a combination of the 5-LOX inhibitor zileuton and the COX-2 inhibitor celecoxib to rats that experienced status epilepticus (SE). Serum and brain capillaries were isolated 48 hours after SE and serum S100β levels were measured and Texas Red™ leakage rates were determined. Dual inhibition of 5-LOX and COX prevented serum S100β elevations observed in SE rats in a dose-dependent manner with licofelone. Inhibition of 5-LOX and COX-2 with zileuton and celecoxib completely prevented serum S100β elevation. Texas Red™ leakage rates for SE rats were also reduced in a dose-depended manner with licofelone and reduced to control rates with zileuton and celecoxib. These data support our hypothesis that seizure-induced blood-brain barrier leakage is mediated by LOX and COX, and inhibition of these enzymes prevents barrier leakage.

Digital Object Identifier (DOI)

https://doi.org/10.13023/ETD.2018.159

Share

COinS