Abstract

Background

Patellar instability is a common and understudied condition that disproportionally affects athletes and military personnel. The rate of post-traumatic osteoarthritis that develops following a patellar dislocation can be up to 50% of individuals 5–15 years after injury. Conservative treatment is the standard of care for patellar instability however, there are no evidence-informed rehabilitation guidelines in the scientific literature. The purpose of this study is to assess the effectiveness of blood-flow restriction training (BFRT) for patellar instability. Our hypotheses are that this strategy will improve patient-reported outcomes and accelerate restoration of symmetric strength and knee biomechanics necessary to safely return to activity.

Methods/Design

This is a parallel-group, superiority, randomized, double-blinded, placebo-controlled clinical trial at the University of Kentucky, sports medicine clinic that aims to recruit 78 patients with acute patellar dislocations randomly allocated into two groups: (1) sham BFRT and (2) BFRT. Both groups will receive the current standard of care physical therapy 3 times per week for up to 9 weeks. Physical therapy sessions will consist of typical standard of care treatment followed by BFRT or sham BFRT. Primary outcomes include the Norwich Patellar Instability Scale, quadriceps strength, and imaging and biochemical biomarkers of cartilage degradation.

Discussion

The current standard of care for non-operative treatment of patellar instability is highly variable does not adequately address the mechanisms necessary to restore lower extremity function and protect the long-term health of articular cartilage following injury. This proposed novel intervention strategy uses an easily implementable therapy to evaluate if BFRT significantly improves patient-reported outcomes, function, and joint health over the first year of recovery.

Trial Registration

Blood Flow Restriction Training, Aspiration, and Intraarticular Normal Saline (BRAINS) NCT04554212. Registered on 18 September 2020.

Document Type

Article

Publication Date

1-28-2022

Notes/Citation Information

Published in Trials, v. 23, article no. 88.

© The Author(s) 2022

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Digital Object Identifier (DOI)

https://doi.org/10.1186/s13063-022-06017-1

Funding Information

The project is funded by the Department of Defense (Award number: W81XWH2010449) with additional support by the NIH National Center for Advancing Translational Sciences through grant number UL1TR001998.

Related Content

Data will be collected in a protected database with an unidentified ID number provided for each participant. All authors of the current manuscript will have access to the final dataset. Participant-level data are available on request by sending an email to Cale Jacobs. All data will be available for 5 years after the relevant publication.

Share

COinS