Author ORCID Identifier

https://orcid.org/0000-0002-8611-8346

Date Available

9-28-2018

Year of Publication

2018

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Engineering

Department/School/Program

Mining Engineering

First Advisor

Dr. Thomas Novak

Abstract

Heavy industries, such as mining, generate dust in quantities that present an occupational health hazard. Prolonged exposure to the respirable dust has been found to result in many irreversible occupational ailments in thousands of miners. In underground mining applications, a variety of scrubbing systems are used to remove dust near the zones of generation. However, the wire-mesh type fibrous screens in the flooded-bed dust scrubbers used on continuous miners, are prone to clogging due to the accumulation of dust particles. This clogging results in a reduced capture efficiency and a higher exposure to the personnel. This research establishes the Vortecone, an inertial wet scrubber system, as a suitable alternative to the existing filters. The Vortecone accelerates its inlet fluids into a rapid circulatory motion into a vortex chamber, preferentially moving the heavier particles towards the impermeable surface to be trapped by the circulating water film. Vortecones are used on automobile painting lines and capture over-sprayed paint particles with cleaning efficacies exceeding 99 % while requiring only infrequent maintenance. The existing design of the Vortecone could also be altered to control the flow patterns.

This dissertation presents detailed computational fluid dynamics (CFD) models to describe air flow patterns in the Vortecone in steady and transient states. Multi-phase spray models were generated to simulate injection of water into the Vortecone. The volume of fraction (VOF) approach was adopted to mimic the air-water interface. The Lagrangian particle tracking method was used to model particle capture on the interface described by the VOF. The CFD models indicate excellent cleaning efficacies, especially of larger particles. Laboratory experiments with optical measurements of aerosols in a reduced scale model of the Vortecone validate the computer models. These experiments which were performed on dust samples with particle sizes 0.3 μm and above, show that the Vortecone captures 90 % particles by mass exceeding about 5.20 and 3.20 μm at air flows of 0.28 m3/s (600 cfm) and 0.38 m3/s (800 cfm), respectively. The development of detailed large eddy simulations (LES) of air flow in the Vortecone provides a novel contribution to research by better resolving the flow patterns.

An impactor-type, self-cleaning, non-clogging impingement screen system was designed as a substitute for conventional screens used in continuous miners. The screen could further be used as an efficient dust capturing mechanism with a demister in general mining applications. CFD models and laboratory experiments are presented to establish the cleaning efficacies of the system. Laboratory experiments to investigate the cleaning efficiency of a fibrous-type conventional screen is also discussed. The parameter, filter selection factor, is proposed to compare the performance of the three systems (Vortecone, fibrous screen, and impingement screen) under similar flows. The Vortecone has been found to be the most efficient dust-cleansing system, although it is the most power intensive fillter. The impingement screen shows a similar cleaning efficiency and a much higher availability compared to the conventional fibrous screen. Because of its minimal maintenance requirement, the impingement screen shows significant promise in dust-control applications in mining.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2018.383

Funding Information

This research was funded by The National Institute for Occupational Safety and Health (NIOSH), via the contract 200-2014-59922, "Coal Mine Dust Mitigation Through Novel Scrubber Development and Numerical Modelling".

Share

COinS