Date Available
12-16-2015
Year of Publication
2015
Document Type
Master's Thesis
Degree Name
Master of Science in Mining Engineering (MSMIE)
College
Engineering
Department/School/Program
Mining Engineering
Advisor
Dr. Thomas Novak
Abstract
Dust is a detrimental, but unavoidable, consequence of any mining process. It is particularly problematic in underground coal mining, where respirable coal dust poses the potential health risk of coal workers’ pneumoconiosis (CWP). Float dust, if not adequately diluted with rock dust, also creates the potential for a dust explosion initiated by a methane ignition. Furthermore, recently promulgated dust regulations for lowering a miner’s exposure to respirable coal dust will soon call for dramatic improvements in dust suppression and capture.
Computational fluid dynamics (CFD) results are presented for a research project with the primary goal of applying a flooded-bed dust scrubber, with high capture and cleaning efficiencies, to a Joy 7LS longwall shearer operating in a 7-ft (2.1 m) coal seam. CFD software, Cradle is used to analyze and evaluate airflow patterns and dust concentrations, under various arrangements and conditions, around the active mining zone of the shearer for maximizing the capture efficiency of the scrubber.
Recommended Citation
Kumar, Ashish R., "COMPUTATIONAL FLUID DYNAMICS (CFD) MODELING AND VALIDATION OF DUST CAPTURE BY A NOVEL FLOODED BED DUST SCRUBBER INCORPORATED INTO A LONGWALL SHEARER OPERATING IN A US COAL SEAM" (2015). Theses and Dissertations--Mining Engineering. 25.
https://uknowledge.uky.edu/mng_etds/25