Date Available

6-15-2015

Year of Publication

2015

Degree Name

Master of Science in Mining Engineering (MSMIE)

Document Type

Master's Thesis

College

Engineering

Department/School/Program

Mining Engineering

First Advisor

Dr. Rick Q. Honaker

Abstract

Coal preparation plants are required in some cases to produce a high-grade product using a low specific gravity cut-point. For these situations, a second higher gravity separation would be desirable to generate a mid-grade product that can be utilized for electricity generation thereby maximizing coal recovery. A study was conducted to evaluate the potential of achieving efficient separations at two different density cut-points in a single stage using a three-product dense medium cyclone. Variations in density cut-point and process efficiency values were quantified as a function of the feed medium density, feed medium-to-coal ratio, and feed pressure using a three-level experimental design program. Results indicate the ability to effectively treat coal over a particle size range from 6mm to 0.15mm while achieving both low- and high-density cut-points up to 1.95 relative density. Ash content decreased from 27.98% in the feed to an average of 7.77% in the clean coal product and 25.76% in the middlings product while sulfur content was reduced from 3.87 to 2.83% in the clean coal product. The overall combustible recovery was maintained above 90% while producing clean coal products with ash and total sulfur content as low as 5.85 and 2.68%, respectively. Organic efficiency values were consistently about 95% and probable error values were in the range of 0.03 to 0.05, which indicates the ability to provide a separation performance equivalent to or better than traditional coal cleaning technologies.

Share

COinS