Date Available


Year of Publication


Degree Name

Master of Science in Mining Engineering (MSMIE)

Document Type

Master's Thesis




Mining Engineering

First Advisor

Dr. Rick Honaker


Korean coals are typically high rank anthracite characterized by high ash content and difficult cleaning characteristics. The main objective of the study was to evaluate the feasibility of treating various size fractions within the coal using an assortment of physical coal cleaning technologies. Dry cleaning is preferred due to the friability of the coal. As such, three pneumatic processes were tested including Ore Sorting for the plus 10 mm material, Air Table Separation for 10 x 1 mm fraction and Tribo-electric Separator for - 1 mm fraction. The Dense Medium Cyclone is known to be one of the most efficient separation processes and thus was evaluated for the cleaning of 10 x 1 mm coal.

To realize the optimum performances from the Air Table and Rotary Tribo-electric Separator, their operational variables were systematically studied using a parametric experimental design. In addition, the dense medium cyclone and X-ray Transmission Sorting trials were performed under various medium densities and separation settings, respectively. A comparison of the cleaning performance revealed that the Dense Medium Cyclone and X-ray Transmission Sorting proved to provide the most effective results with maximum ash rejection and combustible recovery. The tribo-electric separation process was ineffective while the air table provided modest ash reduction potential.