Abstract

BACKGROUND: Production of inflammatory cytokines by mesenteric adipose tissue (MAT) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT.

METHODS: Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water) for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF), and mesenteric lymph nodes.

RESULTS: During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF.

CONCLUSIONS: Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes.

Document Type

Article

Publication Date

12-26-2013

Notes/Citation Information

Published on PLOS One, v. 8, issue. 12, e83693.

© 2013 Saito et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1371/journal.pone.0083693

Share

COinS