Description
Legumes and forbs contain bioactives or plant secondary compounds (PSC) with potential to enhance animal health through their antibiotic, antioxidant and immunomodulatory properties that are evident even at small dietary concentrations. In turn, ruminants can regulate their ingestion of PSC through behavioral mechanisms that allow for the efficient achievement of homeostasis. High concentrations of PSC lead to food avoidance, whereas lower content of PSC in the diet achieved through regulatory mechanisms of ingestion could promote medicinal and/or prophylactic effects in the animal and concomitant health benefits to milk and meat products. Under this context, we discuss the restructuring of rangelands and pasturelands through the strategic distribution of legume- and forb-rich patches in monotonous landscapes dominated by grasses, thus re-establishing their functionality. Such strategies can synergistically complement and provide new dimensions (prophylactic-medicinal, product quality) to the forage resources already available to livestock.
Citation
Villalba, J. J.; MacAdam, J. W.; Vliet, S. Van; and Provenza, F. D., "Integrating Plant Secondary Metabolites and Foraging Behavior to Enhance Animal Health in Ruminant Production Systems" (2024). IGC Proceedings (1993-2023). 80.
https://uknowledge.uky.edu/igc/XXV_IGC_2023/Livestock/80
Included in
Agricultural Science Commons, Agronomy and Crop Sciences Commons, Plant Biology Commons, Plant Pathology Commons, Soil Science Commons, Weed Science Commons
Integrating Plant Secondary Metabolites and Foraging Behavior to Enhance Animal Health in Ruminant Production Systems
Legumes and forbs contain bioactives or plant secondary compounds (PSC) with potential to enhance animal health through their antibiotic, antioxidant and immunomodulatory properties that are evident even at small dietary concentrations. In turn, ruminants can regulate their ingestion of PSC through behavioral mechanisms that allow for the efficient achievement of homeostasis. High concentrations of PSC lead to food avoidance, whereas lower content of PSC in the diet achieved through regulatory mechanisms of ingestion could promote medicinal and/or prophylactic effects in the animal and concomitant health benefits to milk and meat products. Under this context, we discuss the restructuring of rangelands and pasturelands through the strategic distribution of legume- and forb-rich patches in monotonous landscapes dominated by grasses, thus re-establishing their functionality. Such strategies can synergistically complement and provide new dimensions (prophylactic-medicinal, product quality) to the forage resources already available to livestock.