Track 2-3-1: Integrated Nutrient Management for Soil Health and Effects on Quality of Production
Description
Agroforestry as a sustainable land management system, which increases the yield of the land, combines production of crops (including tree crops) and forest plants and/or animals simultaneously or sequentially. Among the different agroforestry system practices in hill area agri-horti system is one of the most important system because of its specific environmental conditions and natural availability of wide range of fruit trees (citrus, apple, walnut, plum, peach, pear, apricot etc.). In Northwestern hill region viz. Uttarakhand, Himachal Pradesh and Jammu and Kashmir horticulture is the backbone of these states economy which supports about 1.5-2.0 million families and, provides direct or indirect employment to 8-10 million peoples with revenue of more than 1 billion $ (USD) annually. In several studies it was reported that plant’s active root system releases about 17% of photosynthate detained in the form of organic compounds into the rhizosphere, most of which is available to the plant by the different soil microbial activities. The soil enzymatic activity play a significant role in efficient utilization of natural resources through agri-horti production system to enhance the soil sustainability and system productivity by the mechanisms of organic matter decomposition, soil stabilization, nutrient cycling, catalyzing several biochemical reactions in the soil system1,2. In recent years, studies soil enzymes activity have engaged the attention of many researchers. However, most of these studies are confined to agricultural cropping systems3 and forest ecosystems but, information regarding those under temperate fruit crops like peach, pear, apricot, lemon, plum etc., are very limited. The hypothesis of this experiment was that the different temperate fruit crops could have differential microbial activity in the rhizospheric soil (surface and sub-surface), influenced by management practice as well as quality of litter fall and root exudates. We assume that information produced from this study will help in understanding of microbial mediated nutrient dynamics and their management under temperate fruit crops in N-W hilly area.
Citation
Mondal, Tilak; Bisht, Jaideep Kumar; Mishra, P. K.; Pandey, B. M.; Mahanta, D.; Meena, V. S.; and Pattanayak, A., "Soil Enzymes: Indicator for Soil Health under Fruit based Agri-Horti System" (2020). IGC Proceedings (1993-2023). 14.
https://uknowledge.uky.edu/igc/23/2-3-1/14
Included in
Soil Enzymes: Indicator for Soil Health under Fruit based Agri-Horti System
Agroforestry as a sustainable land management system, which increases the yield of the land, combines production of crops (including tree crops) and forest plants and/or animals simultaneously or sequentially. Among the different agroforestry system practices in hill area agri-horti system is one of the most important system because of its specific environmental conditions and natural availability of wide range of fruit trees (citrus, apple, walnut, plum, peach, pear, apricot etc.). In Northwestern hill region viz. Uttarakhand, Himachal Pradesh and Jammu and Kashmir horticulture is the backbone of these states economy which supports about 1.5-2.0 million families and, provides direct or indirect employment to 8-10 million peoples with revenue of more than 1 billion $ (USD) annually. In several studies it was reported that plant’s active root system releases about 17% of photosynthate detained in the form of organic compounds into the rhizosphere, most of which is available to the plant by the different soil microbial activities. The soil enzymatic activity play a significant role in efficient utilization of natural resources through agri-horti production system to enhance the soil sustainability and system productivity by the mechanisms of organic matter decomposition, soil stabilization, nutrient cycling, catalyzing several biochemical reactions in the soil system1,2. In recent years, studies soil enzymes activity have engaged the attention of many researchers. However, most of these studies are confined to agricultural cropping systems3 and forest ecosystems but, information regarding those under temperate fruit crops like peach, pear, apricot, lemon, plum etc., are very limited. The hypothesis of this experiment was that the different temperate fruit crops could have differential microbial activity in the rhizospheric soil (surface and sub-surface), influenced by management practice as well as quality of litter fall and root exudates. We assume that information produced from this study will help in understanding of microbial mediated nutrient dynamics and their management under temperate fruit crops in N-W hilly area.