Satellite Symposium 5: Molecular Breeding

Description

In many plants, day length is the critical environmental parameter that controls flowering time. In long day plants, such as Arabidopsis and ryegrass (Lolium perenne), increasing day length in spring signals flowering, while in short day plants like rice, flowering is accelerated when days become shorter. Recently, significant progress has been made in understanding the molecular genetic mechanisms that govern this response. Most results have been obtained in the model plant Arabidopsis where CONSTANS (CO) is a critical candidate gene. Upstream of it is the GIGANTEA (GI) gene which is associated with the circadian clock mechanism (1). The FT gene is the immediate downstream genetic target of CO, and is a direct promoter of flowering (2). Characteristically, all three genes show circadian expression, albeit in different phases, and both the CO and FT genes are up-regulated under long-day (inductive) conditions. Work in ryegrass should help reveal both the conserved and divergent segments of the photoperiod response between different plant species.

Share

COinS
 

Towards Understanding Photoperiodic Response in Grasses

In many plants, day length is the critical environmental parameter that controls flowering time. In long day plants, such as Arabidopsis and ryegrass (Lolium perenne), increasing day length in spring signals flowering, while in short day plants like rice, flowering is accelerated when days become shorter. Recently, significant progress has been made in understanding the molecular genetic mechanisms that govern this response. Most results have been obtained in the model plant Arabidopsis where CONSTANS (CO) is a critical candidate gene. Upstream of it is the GIGANTEA (GI) gene which is associated with the circadian clock mechanism (1). The FT gene is the immediate downstream genetic target of CO, and is a direct promoter of flowering (2). Characteristically, all three genes show circadian expression, albeit in different phases, and both the CO and FT genes are up-regulated under long-day (inductive) conditions. Work in ryegrass should help reveal both the conserved and divergent segments of the photoperiod response between different plant species.