Satellite Symposium 5: Molecular Breeding

Description

Aluminium (Al) toxicity is a major environmental limitation for plant production in acid soils, which represent more than one third of the world’s agricultural land. Al-induced secretion in roots of organic acids (OA), such as malate and citrate, chelates the toxic Al cation excluding it from the root. This mechanism of Al-tolerance appears also to be associated with enhanced P-use efficiency. The development of transgenic plants for enhanced synthesis and secretion of OA from roots is a promising approach to confer Al-tolerance and enhanced P-acquisition efficiency. In order to understand the association between OA biosynthesis and secretion from roots in white clover (Trifolium repens L.), the physiological consequences of over-expressing 3 key white clover OA biosynthetic genes, individually and in combination, were assessed in transgenic plants.

Share

COinS
 

Production and Analysis of Transgenic White Clover (Trifolium Repens) Plants Over-Expressing Organic Acid Biosynthetic Genes

Aluminium (Al) toxicity is a major environmental limitation for plant production in acid soils, which represent more than one third of the world’s agricultural land. Al-induced secretion in roots of organic acids (OA), such as malate and citrate, chelates the toxic Al cation excluding it from the root. This mechanism of Al-tolerance appears also to be associated with enhanced P-use efficiency. The development of transgenic plants for enhanced synthesis and secretion of OA from roots is a promising approach to confer Al-tolerance and enhanced P-acquisition efficiency. In order to understand the association between OA biosynthesis and secretion from roots in white clover (Trifolium repens L.), the physiological consequences of over-expressing 3 key white clover OA biosynthetic genes, individually and in combination, were assessed in transgenic plants.