Theme 11: Biological Constraints to Animal Production from Grasslands
Description
Both the anti-nutritional and beneficial effects of secondary compounds in a range of temperate and tropical forages have been reviewed. Major secondary compounds in temperate and tropical forage plants occur in the phenolic fraction and include condensed and hydrolysable tannins, phenolic monomers and lignin. Condensed tannins (CT) bind to plant protein by pH-reversible hydrogen bonding. In temperate legume forages this reduces rumen protein degradation and can increase the absorption of essential amino acids (EAA) from the small intestine, with reactivity depending on CT concentration, molecular weight and chemical structure. Low concentrations of CT in Lotus corniculatus (20-40g/kg DM) increased EAA absorption by 62% and increased wool growth (15%) and ovulation rate (25%) in grazing sheep and increased milk production in ewes and dairy cows, all without changing voluntary feed intake (VFI). High concentrations of CT in Lotus pedunculatus (80- 100 g/kg DM) depressed VFI and depressed rates of body and wool growth in grazing sheep. Sulla, containing 80-120 g CT/kg DM, was particularly effective for counteracting the effects of parasitism and for promoting high rates of body growth in parasitised lambs. CT is present in tropical species such as Leucaena and Acacia at higher concentrations (60-200 g/kg DM) than in temperate species. Action of CT reduced rumen protein degradation in sheep fed tropical forages, but as yet there is no convincing evidence that this leads to increases in EAA absorption from the small intestine or that CT increases animal production. Further research is needed in these areas with tropical forages, particularly on the relationship between CT structure and its reactivity with proteins. Increasing CT concentration did not depress rumen microbial protein synthesis in sheep fed either temperate or tropical forages, until CT concentration exceeded 130 g/kg DM. Effect of CT upon undegraded, dietary protein release in the small intestine and upon endogenous protein secretion is defined as a future research area.
Flavonoids have been detected in tropical legume forages in the same concentrations as CT. They have anti-nutritional effects in terms of causing amino acid loss during their excretion as conjugates in the urine and by disturbing blood acid/base balance, leading to reduced VFI.
Research currently in progress with other secondary compounds in both temperate and tropical forages is reviewed. This includes sesquiterpene lactones in chicory, acubin in plantain, isoflavones in red clover and coumarin and dihydro-coumarin in glyricidia. The nutritional and anti-nutritional effects of these compounds for both ruminants and non-ruminants is discussed.
Citation
Barry, T. N.; McNeill, D. M.; and McNabb, W. C., "Plant Secondary Compounds; Their Impact on Forage Nutritive Value and upon Animal Production" (2021). IGC Proceedings (1993-2023). 6.
https://uknowledge.uky.edu/igc/19/11/6
Included in
Plant Secondary Compounds; Their Impact on Forage Nutritive Value and upon Animal Production
Both the anti-nutritional and beneficial effects of secondary compounds in a range of temperate and tropical forages have been reviewed. Major secondary compounds in temperate and tropical forage plants occur in the phenolic fraction and include condensed and hydrolysable tannins, phenolic monomers and lignin. Condensed tannins (CT) bind to plant protein by pH-reversible hydrogen bonding. In temperate legume forages this reduces rumen protein degradation and can increase the absorption of essential amino acids (EAA) from the small intestine, with reactivity depending on CT concentration, molecular weight and chemical structure. Low concentrations of CT in Lotus corniculatus (20-40g/kg DM) increased EAA absorption by 62% and increased wool growth (15%) and ovulation rate (25%) in grazing sheep and increased milk production in ewes and dairy cows, all without changing voluntary feed intake (VFI). High concentrations of CT in Lotus pedunculatus (80- 100 g/kg DM) depressed VFI and depressed rates of body and wool growth in grazing sheep. Sulla, containing 80-120 g CT/kg DM, was particularly effective for counteracting the effects of parasitism and for promoting high rates of body growth in parasitised lambs. CT is present in tropical species such as Leucaena and Acacia at higher concentrations (60-200 g/kg DM) than in temperate species. Action of CT reduced rumen protein degradation in sheep fed tropical forages, but as yet there is no convincing evidence that this leads to increases in EAA absorption from the small intestine or that CT increases animal production. Further research is needed in these areas with tropical forages, particularly on the relationship between CT structure and its reactivity with proteins. Increasing CT concentration did not depress rumen microbial protein synthesis in sheep fed either temperate or tropical forages, until CT concentration exceeded 130 g/kg DM. Effect of CT upon undegraded, dietary protein release in the small intestine and upon endogenous protein secretion is defined as a future research area.
Flavonoids have been detected in tropical legume forages in the same concentrations as CT. They have anti-nutritional effects in terms of causing amino acid loss during their excretion as conjugates in the urine and by disturbing blood acid/base balance, leading to reduced VFI.
Research currently in progress with other secondary compounds in both temperate and tropical forages is reviewed. This includes sesquiterpene lactones in chicory, acubin in plantain, isoflavones in red clover and coumarin and dihydro-coumarin in glyricidia. The nutritional and anti-nutritional effects of these compounds for both ruminants and non-ruminants is discussed.