Abstract

Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone) and abiotic factors (temperature, humidity, and photoperiod). The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat) worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass, and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (<24h >old) offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests.

Document Type

Article

Publication Date

5-20-2015

Notes/Citation Information

Published in Frontiers in Physiology, v. 6, article 155, p. 1-9.

© 2015 Zhang, Li, Zhang, Coates, Zhou and Cheng.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Digital Object Identifier (DOI)

https://doi.org/10.3389/fphys.2015.00155

Funding Information

This research was supported by the National Natural Science Foundation of China (Award Number: 31301659), National “Twelfth Five-Year” Plan for Science & Technology Support Development Program of China (Award Number: 2012BAD19B04), China Agriculture Research System (Award Number: CARS-3).

Related Content

The information reported in this paper (No. 15-08-048) is part of a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director.

Share

COinS