Abstract

The brown marmorated stink bug (BMSB) is native to Asia and recently invaded the USA. RNA interference (RNAi) is a gene silencing mechanism in which the introduction of double-stranded RNA (dsRNA) inhibits gene function by degrading target mRNA. In dsRNA stability assays, the dsRNases present in the hemolymph and salivary gland secretions of BMSB showed lower activity than those in the hemolymph of Heliothis virescens. We evaluated six housekeeping genes (18S rRNA, EF1-α, Actin, Ubiquitin, 60S RP and β-Tubulin) across dsRNA treatments (injection and feeding) in nymphs and adults of BMSB and identified 18S rRNA and 60S RP as the best genes to use as a reference in reverse-transcriptase quantitative PCR (RT-qPCR). Homologs of 13 genes that were shown to function as effective RNAi targets in other insects were identified and evaluated by injecting dsRNA targeting these homologs into BMSB adults. Five out of 13 dsRNAs tested caused more than 70% mortality by seven days after injection of dsRNA. Feeding dsRNA targeting five of these genes (IAP, ATPase, SNF7, GPCR, and PPI) to nymphs caused more than 70% mortality by three of the five dsRNAs tested. These data suggest that feeding dsRNA causes target gene knockdown and mortality in BMSB.

Document Type

Article

Publication Date

2-27-2018

Notes/Citation Information

Published in Scientific Reports, v. 8, article no. 3720, p. 1-9.

© The Author(s) 2018

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Digital Object Identifier (DOI)

https://doi.org/10.1038/s41598-018-22035-z

Funding Information

This work was supported by the USDA HATCH under 2351177000.

Related Content

This is publication number 18-08-027 from the Kentucky Agricultural Experimental Station and is published with the approval of the director.

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-22035-z.

41598_2018_22035_MOESM1_ESM.pdf (404 kB)
Supplementary Information

Share

COinS