Abstract

Harmonia axyridis is a voracious predator, a biological control agent, and one of the world most invasive insect species. The advent of next-generation sequencing platforms has propelled entomological research into the genomics and post-genomics era. Real-time quantitative PCR (RT-qPCR), a primary tool for gene expression analysis, is a core technique governs the genomic research. The selection of internal reference genes, however, can significantly impact the interpretation of RT-qPCR results. The overall goal of this study is to identify the reference genes in the highly invasive H. axyridis. Our central hypothesis is that the suitable reference genes for RT-qPCR analysis can be selected from housekeeping genes. To test this hypothesis, the stability of nine housekeeping genes, including 18S, 28S, ACTB, ATP1A1, GAPDH, HSP70, HSP90, RP49, and ATP6V1A, were investigated under both biotic (developmental time, tissue and sex), and abiotic (temperature, photoperiod, in vivo RNAi) conditions. Gene expression profiles were analyzed by geNorm, Normfinder, BestKeeper, and the ΔCt method. Our combined results recommend a specific set of reference genes for each experimental condition. With the recent influx of genomic information for H. axyridis, this study lays the foundation for an in-depth omics dissection of biological invasion in this emerging model.

Document Type

Article

Publication Date

2-9-2018

Notes/Citation Information

Published in Scientific Reports, v. 8, article no. 2689, p. 1-10.

© The Author(s) 2018

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Digital Object Identifier (DOI)

https://doi.org/10.1038/s41598-018-20612-w

Funding Information

This work was supported by Biotechnology Risk Assessment Grant Program Competitive Grant No. 2011-33522-30749 from the USDA National Institute of Food and Agriculture.

Related Content

The information reported in this paper (No. 18-08-005) is part of a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director.

Share

COinS