Abstract

Although, insect herbivores are generally thought to select hosts that favor the fitness of their progeny, this “mother-knows-best” hypothesis may be challenged by the presence of a plant virus. Our previous study showed that the whitefly, Bemisia tabaci, the obligate vector for transmitting Tomato yellow leaf curl virus (TYLCV), preferred to settle and oviposit on TYLCV-infected rather than healthy host plant, Datura stramonium. The performances of B. tabaci larvae and adults were indeed improved on virus-infected D. stramonium, which is consistent with “mother-knows-best” hypothesis. In this study, B. tabaci Q displayed the same preference to settle and oviposit on Tomato spotted wilt virus (TSWV)-infected host plants, D. stramonium and Capsicum annuum, respectively. As a non-vector of TSWV, however, insect performance was impaired since adult body size, longevity, survival, and fecundity were reduced in TSWV infected D. stramonium. This appears to be an odor-mediated behavior, as plant volatile profiles are modified by viral infection. Infected plants have reduced quantities of o-xylene and α-pinene, and increased levels of phenol and 2-ethyl-1-hexanol in their headspace. Subsequent behavior experiments showed that o-xylene and α-pinene are repellant, while phenol and 2-ethyl-1-hexanol are attractive. This indicates that the preference of B. tabaci for virus-infected plants is modulated by the dynamic changes in the volatile profiles rather than the subsequent performances on virus-infected plants.

Document Type

Article

Publication Date

3-16-2017

Notes/Citation Information

Published in Frontiers in Physiology, v. 8, 146, p. 1-9.

© 2017 Chen, Su, Shi, Liu, Peng, Zheng, Xie, Xu, Wang, Wu, Zhou and Zhang.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Digital Object Identifier (DOI)

https://doi.org/10.3389/fphys.2017.00146

Funding Information

This work was supported by the State Key Program of National Natural Science Foundation of China (31420103919), the 973 Program (2013CB127602), the National Natural Science Foundation of China (31572014), China Agriculture Research System (CARS-26-10), Beijing Training Project For The Leading Talents in S and T (LJRC201412), Graduate Research and Innovation Project in Hunan Province (CX2015B248) and the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables.

Share

COinS