Abstract

Alterations in the lumbo-pelvic coordination denote changes in neuromuscular control of trunk motion as well as load sharing between passive and active tissues in the lower back. Differences in timing and magnitude aspects of lumbo-pelvic coordination between patients with chronic low back pain (LBP) and asymptomatic individuals have been reported; yet, the literature on lumbo-pelvic coordination in patients with acute LBP is scant. A case-control study was conducted to explore the differences in timing and magnitude aspects of lumbo-pelvic coordination between females with (n=19) and without (n=19) acute LBP. Participants in each group completed one experimental session wherein they performed trunk forward bending and backward return at preferred and fast paces. The amount of lumbar contribution to trunk motion (as the magnitude aspect) as well as the mean absolute relative phase (MARP) and deviation phase (DP) between thoracic and pelvic rotations (as the timing aspect) of lumbo-pelvic coordination were calculated. The lumbar contribution to trunk motion in the 2nd and the 3rd quarters of both forward bending and backward return phases was significantly smaller in the patient than the control group. The MARP and the DP were smaller in the patient vs. the control group during entire motion. The reduced lumbar contribution to trunk motion as well as the more in-phase and less variable lumbo-pelvic coordination in patients with acute LBP compared to the asymptomatic controls is likely the result of a neuromuscular adaptation to reduce painful deformation and to protect injured lower back tissues.

Document Type

Article

Publication Date

2-28-2017

Notes/Citation Information

Published in Journal of Biomechanics, v. 53, p. 71-77.

© 2017 Elsevier Ltd. All rights reserved.

This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.

The document available for download is the author's post-peer-review final draft of the article.

Digital Object Identifier (DOI)

https://doi.org/10.1016/j.jbiomech.2016.12.039

Funding Information

This work was supported in part by the National Center for Research Resources and the National Center for Advancing Translational Sciences [UL1TR000117]. Dr. Van Dillen’s contribution was supported by grant NICHD/NCMRR R01 HD047709.

Share

COinS