Abstract

Historically, the majority of statistical association methods have been designed assuming availability of SNP-level information. However, modern genetic and sequencing data present new challenges to access and sharing of genotype-phenotype datasets, including cost of management, difficulties in consolidation of records across research groups, etc. These issues make methods based on SNP-level summary statistics particularly appealing. The most common form of combining statistics is a sum of SNP-level squared scores, possibly weighted, as in burden tests for rare variants. The overall significance of the resulting statistic is evaluated using its distribution under the null hypothesis. Here, we demonstrate that this basic approach can be substantially improved by decorrelating scores prior to their addition, resulting in remarkable power gains in situations that are most commonly encountered in practice; namely, under heterogeneity of effect sizes and diversity between pairwise LD. In these situations, the power of the traditional test, based on the added squared scores, quickly reaches a ceiling, as the number of variants increases. Thus, the traditional approach does not benefit from information potentially contained in any additional SNPs, while our decorrelation by orthogonal transformation (DOT) method yields steady gain in power. We present theoretical and computational analyses of both approaches, and reveal causes behind sometimes dramatic difference in their respective powers. We showcase DOT by analyzing breast cancer and cleft lip data, in which our method strengthened levels of previously reported associations and implied the possibility of multiple new alleles that jointly confer disease risk.

Document Type

Article

Publication Date

4-14-2020

Notes/Citation Information

Published in PLOS Computational Biology, v. 16, no. 4, p. 1-25.

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Digital Object Identifier (DOI)

https://doi.org/10.1371/journal.pcbi.1007819

Funding Information

This research was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Environmental Health Sciences.

Related Content

The URL for software referenced in this article is available at: https://github.com/dmitri-zaykin/Total_Decor.

The referenced software is also available for download as the additional file listed at the end of this record.

Total_Decor-master.zip (764 kB)
Software referenced in this article

Included in

Biostatistics Commons

Share

COinS