Abstract

Many aspects of the laboratory environment are not tailored to the needs of rodents, which may cause stress. Unpredictable stressors can cause ulcers, prolonged pituitary-adrenal activation, and anhedonia. Similarly, pain has been demonstrated to slow wound healing, and mice experiencing pain exhibit altered behavior. However it is unknown how husbandry, which occurs when the mice are inactive, and lack of analgesia, specifically in a punch biopsy procedure, effects animal physiology, behavior, and welfare, particularly as it relates to sleep fragmentation. We hypothesized that sleep fragmentation, induced by unpredictable husbandry and lack of pain management will slow wound healing. Two main treatments were tested in a factorial design in C57BL/6 mice of both sexes (64 mice total); 1) analgesia (carprofen and saline) and 2) sleep disruptions (random and predictable). Mice were singly housed in a non-invasive sleep monitoring apparatus on arrival (Day -4). Disruption treatments were applied from Day -3 to 2. All mice received a punch biopsy surgery (Day 0) with topical lidocaine gel and their analgesic treatment prior to recovery, and on Days 1 and 2. Nesting behavior was assessed daily and a sugar cereal consumption test, as a measure of anhedonia, was conducted on Days -1 to 2. On Day 3, mice were euthanized and wound tissue and adrenal glands were collected. We found that the disruption predictability had no effect on mouse sleep, wound healing, or adrenal cortex:medulla ratio. It’s possible that the disruption period was not long enough to induce chronic stress. However, male mice who received analgesia slept more than their female counterparts; this may be related to sex differences in pain perception. Overall, it does not appear that the predictability of disturbance effects sleep fragmentation or stress responses, indicating that husbandry activities do not need to occur at set predictable times to improve welfare.

Document Type

Article

Publication Date

1-31-2019

Notes/Citation Information

Published in PLOS ONE, v. 14, no. 1, e0210620, p. 1-17.

© 2019 Robinson-Junker et al.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Digital Object Identifier (DOI)

https://doi.org/10.1371/journal.pone.0210620

Funding Information

This project was funded by a 3500 pound small project grant from the Universities Federation for Animal Welfare (https://www.ufaw.org.uk/small-project-and-travel-awards/small-project-and-travel-awards ARJ and BG).

Related Content

S1 File. Data set with SAS code for analyses performed. https://doi.org/10.1371/journal.pone.0210620.s001 (DOCX)

journal.pone.0210620.s001.docx (44 kB)
S1 File. Data set with SAS code for analyses performed.

Included in

Biology Commons

Share

COinS