Abstract

Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, KV2.1, KV2.2, L-type CaV channels and H/K ATPases) or completely (GlyR, GABAAR, KV1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K+ channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H+ pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair.

Document Type

Article

Publication Date

8-2017

Notes/Citation Information

Published in Mechanisms of Development, v. 146, p. 42-54.

© 2017 Elsevier B.V.

This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.

The document available for download is the author's post-peer-review final draft of the article.

Digital Object Identifier (DOI)

https://doi.org/10.1016/j.mod.2017.06.001

Funding Information

This work was funded by the Biomedical Sciences Research Group, LLC and the NIH (R24OD021479). Axolotl embryos used in this study were obtained from the Ambystoma Genetic Stock Center (AGSC) at the University of Kentucky. The AGSC is funded by the NIH (P40OD019794).

Related Content

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mod.2017.06.001.

NIHMS941971-supplement-Supplemental.pdf (8486 kB)
Supplementary Material

Share

COinS