Date Available

7-17-2016

Year of Publication

2016

Degree Name

Master of Science in Biosystems and Agricultural Engineering (MSBiosyAgE)

Document Type

Master's Thesis

College

Agriculture; Engineering

Department/School/Program

Biosystems and Agricultural Engineering

First Advisor

Dr. Sue E. Nokes

Abstract

This project aimed investigated cellulase in-situ production for large-scale on-farm production of lignocellulosic biofuel. Cellulase activity and glucose released by T. reesei with corn stover and wheat bran as co-substrates for solid state cultivation (SSC) were examined. Co-cultivation has previously increased T. reesei cellulase, but corn stover and wheat bran have not been co-cultivated (Dhillon, Oberoi et al. 2011). This work compared cellulase activity and glucose concentration of corn stover co-cultivated with 0-40% wheat bran in high solids. Samples with at least 20% wheat bran exhibited increased cellulase activity. However, the average glucose concentration without wheat bran was 3.29 g/L compared to 16.7 g/L with wheat bran.

Glucose released by T. reesei on pretreated corn stover with 0-40% wheat bran was compared at the optimal temperatures for fungal growth and for cellulase activity after SSC. Previous research has rarely used cellulase from SSC to hydrolyze lignocellulose. Following SSC of T. reesei at 30°C for seven days, samples were warmed to 50°C for five days. Glucose concentration increased to 12.1 and 32.7 g/L for samples with and without wheat bran. This strategy could reduce lignocellulosic fuel production costs by eliminating need for commercial cellulase and is promising for efficient cellulose hydrolysis.

Digital Object Identifier (DOI)

http://dx.doi.org/10.13023/ETD.2016.372

Share

COinS