Date Available

1-1-1970

Year of Publication

2015

Degree Name

Master of Science in Biosystems and Agricultural Engineering (MSBiosyAgE)

Document Type

Master's Thesis

College

Agriculture; Engineering

Department/School/Program

Biosystems and Agricultural Engineering

First Advisor

Dr. Michael D. Montross

Abstract

Understanding the energy input and emissions resulting from the development of biofuels is important to quantify the overall benefit of the biofuel. As part of the On-Farm Biomass Processing project, a life cycle assessment (LCA) was conducted on the process to harvest and transport agricultural crop residues ready for processing into biofuel. A Microsoft Excel model was developed that inventories the entire life cycle of the process, including incorporation of stochastic analysis within the model. The LCA results of the agricultural equipment manufacture are presented, along with the results of each step of the process, including fertilizer addition, single pass harvest, double pass harvest, and transport from the field to processing facility. Various methods of analyzing co-products are also presented for the single pass harvesting step, in which comparisons between market based, mass based and process-purpose based allocation methods are reviewed. The process-purpose based method of fuel consumption difference between combine operation in conventional harvest versus single pass harvest is determined to be the most realistic of the process. A detailed comparison of the energy and emission differences between single pass and double pass harvesting is given, along with the total LCA results of harvesting and transporting the biomass.

Share

COinS