Abstract
Foodborne illness due to the consumption of contaminated products continues to be a serious public health issue. Bacteriophages might provide a natural and effective way to control and reduce the pathogenic bacterial population on food products. Researchers have conducted various experiments to prove their effectiveness against different pathogens and their ability to act as a natural intervention to control pathogen populations, especially in the food industry. In this study, a cocktail of bacteriophages (phages) was added to wash water in the presence of a high organic load along with commercially used sanitizers (chlorine or Sanidate 5.0) to study the efficacy of the phage–sanitizer combination in the challenge water. It was determined that in the absence of organic loads, the sanitizer by itself or the combination with phages significantly (p < 0.001) reduced the contamination by 3.00–5.00 log CFU/mL. In the presence of organic loads, the sanitizer by itself did not contribute to a significant reduction (p > 0.05) compared to the control. However, the sanitizer–phage combination led to a 3.00-log and 6.00-log reduction (p < 0.001) of the pathogen at the end of 3 and 6 h, respectively, in the presence of high organic loads. Therefore, utilizing a combination treatment (phage–sanitizer) might be one solution to reduce pathogen contamination in the food industry, especially the fresh produce industry, thus providing safe food for consumption.
Document Type
Article
Publication Date
12-27-2021
Digital Object Identifier (DOI)
https://doi.org/10.3390/applmicrobiol2010002
Repository Citation
Jagannathan, Badrinath Vengarai; Kitchens, Steven; Price, Stuart; Morgan, Melissa; and Vijayakumar, Paul Priyesh, "Application of a Bacteriophage–Sanitizer Combination in Post-Harvest Control of E. coli O157:H7 Contamination on Spinach Leaves in the Presence or Absence of a High Organic Load Produce Wash" (2021). Animal and Food Sciences Faculty Publications. 57.
https://uknowledge.uky.edu/animalsci_facpub/57
Notes/Citation Information
Published in Applied Microbiology, v. 2, issue 1.
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).