Abstract

The detection of acoustic emission (AE) from Lactococcus lactis, ssp lactis is reported in which emission intensities are used to follow and define metabolic activity during growth in nutrient broths. Optical density (OD) data were also acquired during L. lactis growth at 32°C and provided insight into the timing of the AE signals relative to the lag, logarithmic, and stationary growth phases of the bacteria. The inclusion of a metabolic inhibitor, NaN3, into the nutrient broth eliminated bacteria metabolic activity according to the OD data, the absence of which was confirmed using AE data acquisition. The OD and AE data were also acquired before and after the addition of Bacteriophage c2 in L. lactis containing nutrient broths during the early or middle logarithmic phase; c2 phage m.o.i. (Multiplicity of infection) was varied to help differentiate whether the detected AE was from bacteria cells during lysis or from the c2 phage during genome injection into the cells. It is proposed that AE measurements using piezoelectric sensors are sensitive enough to detect bacteria at the amount near 104 cfu/mL, to provide real time data on bacteria metabolic activity and to dynamically monitor phage infection of cells.

Document Type

Article

Publication Date

2013

Notes/Citation Information

Published in ISRN Microbiology, v. 2013, article ID 257313, p. 1-11.

Copyright © 2013 Debasish Ghosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1155/2013/257313

Share

COinS