Date Available

9-23-2014

Year of Publication

2014

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Pharmacy

Department/School/Program

Pharmaceutical Sciences

First Advisor

Dr. Peter A. Crooks

Second Advisor

Dr. Kyung-Bo Kim

Abstract

Resveratrol has been reported as a potential anticancer agent but cannot be used as an antitumor drug due to its chemical and metabolic instability. We have designed and synthesized 184 novel compounds related to resveratrol in an attempt to produce more potent and drug-like molecules. We have identified a tetrazole analog of resveratrol, ST-145(a) as a lead anticancer agent from the resveratrol analog series of compounds with a GI50 value of less than 10nM against almost all the human cancer cell lines in the National Cancer Institute’s screening panel.

In a separate study, we tested the hypothesis that the limited bioavailability of resveratrol, can be improved by synthesizing analogs which would be glucuronidated at a lower rate than resveratrol itself. We demonstrated that ST-05 and ST-12(a) exhibit lower glucuronidation profiles when compared to resveratrol and that these synthesized stilbenoids likely represent useful scaffolds for the design of efficacious resveratrol analogs.

We have also initiated a new discovery program to identify selective CB1 and CB2 receptor ligands from a library of novel stilbene scaffolds structurally related to the resveratrol molecule. From the screened resveratrol analogs, two compounds were identified as selective CB2 and CB1 ligands. Compound ST-179 had 47-fold selectivity for CB2 (Ki = 284 nM) compared to CB1, while compound ST-160 was 2-fold selective for CB1 (Ki = 400 nM) compared to the CB2 receptor. These structural analogs have the potential for development as novel cannabinoid therapeutics for treatment of obesity and/or drug dependency.

Combretastatin A4 (CA-4) is one of the most potent antiangiogenic and antimitotic agents of natural origin. However, CA-4 suffers from chemical instability due to cis-trans isomerism in solution. To circumvent this problem, we have developed a facile procedure for the synthesis of novel 4,5-diaryl-2H-1,2,3-triazoles as CA-4 analogs to constrain the molecule to its cis-configuration. Twenty three triazoles were prepared as CA-4 analogs and submitted for anticancer screening. Among these CA-4 analogs, ST-467 and ST-145(b) can be considered as lead anticancer agents from this series, and further investigation against various cancer cell types in vivo with this class of compound may provide novel therapeutic avenues for treatment.

Share

COinS