Year of Publication

2014

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Pharmacy

Department

Pharmaceutical Sciences

First Advisor

Dr. Heidi M. Mansour

Second Advisor

Dr. Paul M. Bummer

Abstract

The aim of the work was to design, manufacture, and characterize targeted multi-component dry powder aerosols of (non-destructive) mucolytic agent (mannitol), antimicrobial drug (tobramycin or azithromycin), and lung surfactant mimic phospholipids (DPPC:DPPG=4:1 in molar ratio). The targeted dry powder for inhalation formulation for deep lung delivery with a built-in rationale of specifically interfering several disease factors of chronic infection diseases in deep lungs such as cystic fibrosis, pneumonia, chronic bronchitis, and etc. The dry powder aerosols consisting of selected chemical agents in one single formulation was generated by using spray drying from organic solution.

The physicochemical properties of multi-component dry powder inhaler (DPI) formulation were characterized by a number of techniques. In addition, the in vitro aerosol dispersion performance, storage stability test, and in vitro drug release of selected spray-dried (SD) multi-component systems were conducted.

The physicochemical study revealed that multi-component aerosol particles possessed essential particle properties suitable for deep lung delivery. In general, the multi-component particles (typically 0.5 to 2 µm) indicated that the designed SD aerosol particles could potentially penetrate deep lung regions (such as respiratory bronchiolar and alveolar regions) by sedimentation and diffusion, respectively. The essential particle properties including narrow size distribution, spherical particle and smooth surface morphologies, and low water content (or water vapor sorption) could potentially minimize interparticulate interactions. The study of in vitro aerosol dispersion performance showed that majority of SD multi-component aerosols exhibited low values (less than 5µm) of MMAD, high values (approximately above 30% up to 60.4%) of FPF, and high values (approximately above 90%) of ED, respectively. The storage stability study showed that azithromycin–incorporated multi-component aerosol particles stored at 11 and 40% RH with no partial crystallization were still suitable for deep lung delivery. Compared to SD pure azithromycin particles, the azithromycin-incorporated multi-component particles exhibited an enhanced initial release.

The targeted microparticulate and nanoparticulate multi-component dry powder aerosol formulations with essential particle properties for deep lung pulmonary delivery were successfully produced by using spray drying from organic solution. The promising experimental data suggest the multi-component formulations could be further investigated in in vivo studies for the purpose of commercialization.