Author ORCID Identifier

https://orcid.org/0000-0002-0628-8047

Date Available

3-14-2019

Year of Publication

2019

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Medicine

Department/School/Program

Toxicology and Cancer Biology

First Advisor

Dr. Zhuo Zhang

Abstract

Hexavalent Chromium (Cr(VI) induces malignant cell transformation in normal bronchial epithelial (BEAS-2B) cells. Cr(VI)-transformed cells exhibit increased level of antioxidants, are resistant to apoptosis, and are tumorigenic. RNAseq analysis in Cr(VI)-transformed cells showed that expression of transcripts associated with mitochondrial oxidative phosphorylation is reduced, and the expression of transcripts associated with pentose phosphate pathway, glycolysis, and glutaminolysis are increased. Sirtuin-3 (SIRT3) regulates mitochondrial adaptive response to stress, such as metabolic reprogramming and antioxidant defense mechanisms. SIRT3 was upregulated and it positively regulated mitochondrial oxidative phosphorylation in Cr(VI)-transformed cells. Our results suggests that SIRT3 plays an important role in mitophagy deficiency of Cr(VI)-transformed cells. Furthermore, SIRT3 knockdown suppressed cell proliferation and tumorigenesis of Cr(VI)-transformed cells. Nrf2 is a transcription factor that regulates oxidative stress response. This study investigated the role of Nrf2 in regulating metabolic reprogramming in Cr(VI)-transformed cells. We observed that in Cr(VI)-transformed cells p-AMPKthr172 was increased, when compared to normal BEAS-2B cells. Additionally, Nrf2 knockdown reduced p-AMPKthr172. Our results suggest that Nrf2 regulated glycolytic shift via AMPK regulation of PFK1/PFK2 pathway. Furthermore, our results showed that Nrf2 constitutive activation in Cr(VI-transformed cells increased cell proliferation and tumorigenesis. Overall this dissertation demonstrated that Cr(VI)-transformed cells undergo metabolic reprogramming. We demonstrated that Nrf2 constitutive activation plays decisive role on metabolic reprogramming induction, and SIRT3 activation contributing to increased cancer cell proliferation and tumorigenesis.

Digital Object Identifier (DOI)

https://doi.org/10.13023/etd.2019.047

Funding Information

Science Without Borders - 99999.013610/2013-09

Share

COinS