Abstract

Body-worn inertial sensors have enabled motion capture outside of the laboratory setting. In this work, an inertial measurement unit was attached to the upper arm to track and discriminate between shoulder motion gestures in order to help prevent shoulder over-use injuries in athletics through real-time preventative feedback. We present a detection and classification approach that can be used to count the number of times certain motion gestures occur. The application presented involves tracking baseball throws and volleyball serves, which are common overhead movements that can lead to shoulder and elbow overuse injuries. Eleven subjects are recruited to collect training, testing, and randomized validation data, which include throws, serves, and seven other exercises that serve as a large null class of similar movements, which is analogous to a realistic usage scenario and requires a robust estimator.

Document Type

Article

Publication Date

11-3-2016

Notes/Citation Information

Published in Sensors, v. 16, issue 11, 1847, p. 1-15.

© 2016 by the authors; licensee MDPI, Basel, Switzerland.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Digital Object Identifier (DOI)

https://doi.org/10.3390/s16111847

Share

COinS