Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodulation, these two models are now widely used in a variety of biological fields from plant physiology and development to population genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community. Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed.

Document Type


Publication Date


Notes/Citation Information

Published in International Journal of Plant Genomics, v. 2008, article ID 256597, p. 1-11.

Copyright © 2008 Jean-Michel Ané et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Digital Object Identifier (DOI)