Earthworms are soil engineers that alter the soil bio-physical properties to favor plant growth whereas pesticides represent a significant threat to their abundance and soil health. Thus, we investigated the toxic effects of tribenuron-methyl (TBM) and tebuconazole (TEB) on the soil earthworm, Eisenia fetida. The TBM demonstrated low toxicity to E. fetida in the contact filter paper and artificial soil tests, with median lethal concentrations (LC50) of 135.6 μg cm−2 at 48 h and 511 mg kg−1 on day 14, respectively. Similarly, TEB also showed low toxicity to E. fetida in the artificial soil test with LC50 of 287 mg kg−1 on day 14. However, TEB was highly toxic to earthworm in the contact filter paper test with LC50 of 5.7 μg cm−2 at 48 h. The mixture of two pesticides had an antagonistic effect on the earthworm. Under 0.1 LC50 of TBM and TEB, either single or combined application of pesticides induced oxidative stress and inhibited cellulase activity in early days of the earthworm exposure. However, both pesticides did not damage the earthworm DNA. Our results suggest that pesticides can negatively affect soil earthworms and provide valuable information regarding the responses of soil biological engineers to the lethal agrochemicals.

Document Type


Publication Date


Notes/Citation Information

Published in Scientific Reports, v. 8, article no. 2967, p. 1-9.

© The Author(s) 2018

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Digital Object Identifier (DOI)


Funding Information

This work was supported by the grants from the Natural Science Foundation of Shandong Province, China (ZR2016CM11), Research Foundation for advanced Talents of Qingdao Agricultural University (631332), and Tai-Shan Scholar Construction Foundation of Shandong Province, China.