Abstract
Transcription factors have been considered undruggable, but this paradigm has been recently challenged. DNA binding natural product mithramycin (MTM) is a potent antagonist of oncogenic transcription factor EWS–FLI1. Structural details of MTM recognition of DNA, including the FLI1 binding sequence GGA(A/T), are needed to understand how MTM interferes with EWS–FLI1. We report a crystal structure of an MTM analogue MTM SA–Trp bound to a DNA oligomer containing a site GGCC, and two structures of a novel analogue MTM SA–Phe in complex with DNA. MTM SA–Phe is bound to sites AGGG and GGGT on one DNA, and to AGGG and GGGA(T) (a FLI1 binding site) on the other, revealing how MTM recognizes different DNA sequences. Unexpectedly, at sub-micromolar concentrations MTMs stabilize FLI1–DNA complex on GGAA repeats, which are critical for the oncogenic function of EWS–FLI1. We also directly demonstrate by nuclear magnetic resonance formation of a ternary FLI1–DNA–MTM complex on a single GGAA FLI1/MTM binding site. These biochemical and structural data and a new FLI1–DNA structure suggest that MTM binds the minor groove and perturbs FLI1 bound nearby in the major groove. This ternary complex model may lead to development of novel MTM analogues that selectively target EWS–FLI1 or other oncogenic transcription factors, as anti-cancer therapeutics.
Document Type
Article
Publication Date
10-14-2016
Digital Object Identifier (DOI)
https://doi.org/10.1093/nar/gkw761
Funding Information
University of Kentucky Markey Cancer Center Pilot Award (to O.V.T., J.R.); National Institutes of Health (NIH) [CA091901 to J.R.]; US Department of Defense Prostate Cancer Research Program [PC150300 to O.V.T and J.R.]; NIH P30 to NMR Core Facility at the University of Texas Health Science Center at San Antonio and Cancer Therapy and Research Center [CA054174]. Funding for open access charge: NIH.
Repository Citation
Hou, Caixia; Weidenbach, Stevi; Cano, Kristin E.; Wang, Zhonghua; Mitra, Prithiba; Ivanov, Dmitri N.; Rohr, Jürgen; and Tsodikov, Oleg V., "Structures of Mithramycin Analogues Bound to DNA and Implications for Targeting Transcription Factor FLI1" (2016). Pharmaceutical Sciences Faculty Publications. 78.
https://uknowledge.uky.edu/ps_facpub/78
Supplementary Data
Included in
Nucleic Acids, Nucleotides, and Nucleosides Commons, Pharmacy and Pharmaceutical Sciences Commons
Notes/Citation Information
Published in Nucleic Acids Research, v. 44, issue 18, p. 8990-9004.
© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com