Abstract

We synthesized 26Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down (∼3000- and 850-fold) to prepare ∼300–400 mg of each SALP. The 26Al was incorporated at the beginning of the syntheses to maximize 26Al and 27Al equilibration and incorporate the 26Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The 26Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the 26Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was ∼0.02% and from basic SALP in cheese ∼0.05%, lower than our previous determination of Al bioavailability from drinking water, ∼0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake.

Document Type

Article

Publication Date

4-2005

Notes/Citation Information

Publishe in Nuclear Instruments and Methods in Physics Research Section B, v. 229, issues 3-4.

Copyright © 2005 Elsevier B.V.

© 2005. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/.

The document available for download is the authors' post-peer-review final draft of the article.

Digital Object Identifier (DOI)

https://doi.org/10.1016/j.nimb.2004.12.130

Funding Information

Supported by NIH Grant R01 ES11305.

Share

COinS