Abstract

BACKGROUND: One of the most prominent opioid analgesics in the United States is the high potency agonist fentanyl. It is used in the treatment of acute and chronic pain and as an anesthetic adjuvant. When used inappropriately, however, ingestion of just a few milligrams of fentanyl or other synthetic opioid can cause opioid-induced respiratory depression (OIRD), often leading to death. Currently, the treatment of choice for OIRD is the opioid receptor antagonist naloxone. Recent reports, however, suggest that higher doses or repeated dosing of naloxone (due to recurrence of respiratory depression) may be required to reverse fully fentanyl-induced respiratory depression, rendering this treatment inadequate. To combat this synthetic opioid overdose crisis, this research aims at identifying a novel opioid reversal agent with enhanced efficacy towards fentanyl and other synthetic opioids.

METHODS: A series of naltrexone analogues were characterized for their ability to antagonize the effects of fentanyl in vitro utilizing a modified forskolin-induced cAMP accumulation assay. Lead analogue 29 was chosen to undergo further PK studies, followed by in vivo pharmacological analysis to determine its ability to antagonize opioid-induced antinociception in the hot plate assay.

RESULTS: A series of potent MOR antagonists were identified, including the highly potent analogue 29 (IC50 = 2.06 nM). Follow-up PK studies revealed 29 to possess near 100% bioavailability following IP administration. Brain concentrations of 29 surpassed plasma concentrations, with an apparent terminal half-life of ~ 80 min in mice. In the hot plate assay, 29 dose-dependently (0.01–0.1 mg/kg; IP) and fully antagonized the antinociception induced by oxycodone (5.6 mg/kg; IP). Furthermore, the dose of 29 that is fully effective in preventing oxycodone-induced antinociception (0.1 mg/kg) was ineffective against locomotor deficits caused by the KOR agonist U50,488.

CONCLUSIONS: Methods have been developed that have utility to identify enhanced rescue agents for the treatment of OIRD. Analogue 29, possessing potent MOR antagonist activity in vitro and in vivo, provides a promising lead in our search for an enhanced synthetic opioid rescue agent.

Document Type

Article

Publication Date

9-9-2021

Notes/Citation Information

Published in Journal of Biomedical Science, v. 28, issue 1, article no. 62.

© The Author(s) 2021

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Digital Object Identifier (DOI)

https://doi.org/10.1186/s12929-021-00758-y

Funding Information

This work was supported by in part by DA018151 (to T.E.P.), GM008545 (to S.L.H.) and the Kentucky Medical Services Foundation Endowed Chair in Pharmacy (T.E.P.). Support for the NMR instrumentation was provided by NIH Shared Instrumentation Grant #S10OD028690.

Related Content

Additional data is available. The data that support the findings of this study are available from the corresponding author upon reasonable request.

12929_2021_758_MOESM1_ESM.pdf (1805 kB)
Additional file: File includes synthetic experimental details, 1H NMR spectra, 13C NMR spectra, and HPLC chromatograms of 14, 16, 20–22, and 25, 26 and 28–30.

Share

COinS