Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation


Agriculture, Food and Environment


Plant Pathology

First Advisor

Dr. Pradeep Kachroo


Systemic acquired resistance (SAR) is a form of inducible defense response triggered upon localized infection that confers broad-spectrum disease resistance against secondary infections. Several factors are known to regulate SAR and these include phenolic phytohormone salicylic acid (SA), phosphorylated sugar glycerol-3-phosphate (G3P), and dicarboxylic acid azelaic acid (AzA). This study evaluated a role for free radicals nitric oxide (NO) and reactive oxygen species (ROS) in SAR. Normal accumulation of both NO and ROS was required for normal SAR and mutations preventing NO/ROS accumulation and/or biosynthesis compromised SAR. A role for NO and ROS was further established using pharmacological approaches. Notably, both NO and ROS conferred SAR in a concentration dependent manner. This was further established using genetic mutants that accumulated high levels of NO. NO/ROS acted upstream of G3P and in parallel to SA. Collectively, these results suggest that NO and ROS are essential components of the SAR pathway.

Digital Object Identifier (DOI)