Date Available


Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Plant Pathology

First Advisor

Dr. Pradeep Kachroo


Oleic acid (18:1) is one of the important monounsaturated fatty acids, which is synthesized upon desaturation of stearic acid and this reaction is catalyzed by the SSI2 encoded stearoyl-acyl-carrier-protein-desaturase. A mutation in SSI2 leads to constitutive activation of salicylic acid (SA)-mediated defense responses. Consequently, these plants accumulate high levels of SA and show enhanced resistance to bacterial and oomycete pathogens. Replenishing 18:1 levels in ssi2 plants, via a second site mutation in GLY1 encoded glycerol-3-phosphate (G3P) dehydrogenase, suppresses all the ssi2-triggered phenotypes. Study of mechanism(s) underlying gly1-mediated suppression of ssi2 phenotypes showed that 18:1 levels are regulated via acylation with G3P and a balance between G3P and 18:1 is critical for the regulation of defense signaling pathways. To establish a role for 18:1 and G3P during host defense, interaction between Colletotrichum higginsianum and Arabidopsis was studied. Resistance to C. higginsianum correlated with host G3P levels. The gly1 plants showed increased susceptibility while act1 plants, defective in utilization of G3P, showed enhanced resistance. Plant overexpessing GLY1 showed enhanced resistance in both wild type as well as camalexin deficient backgrounds. Together, these results suggested that G3P conferred resistance acted downstream or independent of camalexin.

Exogenous application of glycerol lowered 18:1 levels and produced ssi2-like phenotypes in wild-type plants. Furthermore, glycerol application or the ssi2 mutation produced similar phenotypes in fatty acid desaturation mutants and mutants defective in SA/resistance gene signaling. Expression studies showed that ssi2 phenotypes were likely due to increased expression of resistance genes. Epistatic analysis suggested that certain components of SA pathway had redundant function and were required for 18:1-regulated signaling.