Date Available

12-8-2015

Year of Publication

2014

Document Type

Doctoral Dissertation

Degree Name

Doctor of Philosophy (PhD)

College

Medicine

Department/School/Program

Physiology

Advisor

Dr. Gregory I. Frolenkov

Abstract

TRPA1 channels are sensors for noxious stimuli in a subset of nociceptive neurons. TRPA1 channels are also expressed in cells of the mammalian inner ear, but their function in this tissue remains unknown given that Trpa1–/– mice exhibit normal hearing, balance and sensory mechanotransduction. Here we show that non-sensory (supporting) cells of the hearing organ in the cochlea detect tissue damage via the activation of TRPA1 channels and subsequently modulate cochlear amplification through active cellshape changes.

We found that cochlear supporting cells of wild type but not Trpa1–/– mice generate inward currents and robust long-lasting Ca2+ responses after stimulation with TRPA1 agonists. These Ca2+ responses often propagated between different types of supporting cells and were accompanied by prominent tissue displacements. The most prominent shape changes were observed in pillar cells which here we show possess Ca2+-dependent contractile machinery. Increased oxidative stress following acoustic overstimulation leads to the generation of lipid peroxidation byproducts such as 4-hydroxynonenal (4-HNE) that could directly activate TRPA1. Therefore, we exposed mice to mild noise and found a longer-lasting inhibition of cochlear amplification in wild type than in Trpa1–/– mice.

Our results suggest that TRPA1-dependent changes in pillar cell shape can alter the tissue geometry and affect cochlear amplification. We believe this novel mechanism of cochlear regulation may protect or fine-tune the organ of Corti after noise exposure or other cochlear injuries.

Share

COinS