Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation





First Advisor

Dr. Steven Estus


Recent Genome Wide Association Studies (GWAS) have identified a series of single nucleotide polymorphism (SNP)s that are associated with Alzheimer’s disease (AD). One of the SNPs, rs3851179 (G/A), is near the gene phosphatidylinositol-binding clathrin assembly protein (PICALM). To evaluate whether this SNP is associated with PICALM expression, we quantified PICALM mRNA in 56 brain cDNA samples. Using linear regression analysis, we analyzed PICALM expression relative to rs3851179, AD status, and cell type specific markers. An association was detected between rs3851179 and PICALM, microvessel mRNA, glial fibrillary acidic protein (GFAP) mRNA, and synaptophysin (SYN) mRNA. To gain clarity into other possible SNP mechanisms, we searched brain cDNA for PICALM splice variants. We identified several PICALM splice variants involving exons 13-19. To identify and gain an estimation of relative abundance of splice variants, we PCR-amplified across exons 13-20 in cDNA from six individuals, three rs3851179 GG individuals and three rs3851179 AA individuals. Sequencing the cloned isoforms we found that PICALM lacking exon 13 (delta 13) is the most abundant isoform. Other isoforms detected included deletion of exon 18-19. We targeted the latter part of the gene, exon 17-20, to investigate unequal allelic expression using next generation sequencing. Individuals heterozygous for rs76719109 (n= 35), located in exon 17, were used to study the abundance of G/T allele in cDNA and genomic DNA. When we analyzed the T:G allelic ratio, the variant lacking exons 18 and 19 showed unequal allelic expression (p-value < 0.001) in a subset of individuals. One individual was an outlier, showing overall unequal allelic expression, which maybe be harboring a rare mutation capable of modifying PICALM expression. The PICALM intronic SNP rs588076 was associated with delta 18-19 isoform splicing (p-value < 0.001). In conclusion, this study gained a greater insight into the role of AD genetics in PICALM expression and splicing.