Abstract

In relativistic heavy-ion collisions, a global spin polarization, PH, of Λ and Λ¯ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing PH with decreasing √sNN. A splitting between Λ and Λ¯ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of √sNN=19.6 and 27 GeV in the BNL Relativistic Heavy Ion Collisions Beam Energy Scan Phase II using the STAR detector, with an upper limit of PΛ¯-PΛ< 0.24% and PΛ¯-PΛ< 0.35%, respectively, at a 95% confidence level. We derive an upper limit on the naive extraction of the late-stage magnetic field of B< 9.4×10^12 T and B< 1.4×10^13 T at √sNN=19.6 and 27 GeV, respectively, although more thorough derivations are needed. Differential measurements of PH were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of |y|< 1 and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.

Document Type

Article

Publication Date

2023

Notes/Citation Information

© 2023 American Physical Society

Digital Object Identifier (DOI)

https://doi.org/10.1103/PhysRevC.108.014910

Funding Information

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre and WUT ID-UB of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

Share

COinS