Abstract

Electrical control of structural and physical properties is a long-sought, but elusive goal of contemporary science and technology. We demonstrate that a combination of strong spin-orbit interactions (SOI) and a canted antiferromagnetic Mott state is sufficient to attain that goal. The antiferromagnetic insulator Sr2IrO4 provides a model system in which strong SOI lock canted Ir magnetic moments to IrO6 octahedra, causing them to rigidly rotate together. A novel coupling between an applied electrical current and the canting angle reduces the Néel temperature and drives a large, nonlinear lattice expansion that closely tracks the magnetization, increases the electron mobility, and precipitates a unique resistive switching effect. Our observations open new avenues for understanding fundamental physics driven by strong SOI in condensed matter, and provide a new paradigm for functional materials and devices.

Document Type

Article

Publication Date

1-4-2018

Notes/Citation Information

Published in Physical Review Letters, v. 120, issue 1, 017201, p. 1-6.

© 2018 American Physical Society

The copyright holder has granted the permission for posting the article here.

Digital Object Identifier (DOI)

https://doi.org/10.1103/PhysRevLett.120.017201

Funding Information

This work was supported by the National Science Foundation via Grants No. DMR-1712101 (University of Colorado) and No. DMR-1506979 (L. E. D.), and by Department of Energy, Office of Basic Energy Science, Materials Science through the award DEFG02-84ER45872 (P. S. R.).

Share

COinS