Abstract

The spatial and radial velocity distribution of broad-line-emitting gas in the Seyfert 1 galaxy NGC 5548 is examined through the process of reverberation mapping, which is done by detailed comparison of continuum and emission-line variations. Recent spectroscopic monitoring of NGC 5548 with HST and IUE allows us to resolve the "transfer function" (TF) that relates the continuum and emission-line variability. We also examine the radial velocity-resolved TFs, and confirm that predominantly radial motions of the line-emitting clouds can be excluded. We find that a broad-line region comprised of clouds that are orbiting a central source of mass ~108 M along randomly inclined Keplerian orbits and irradiated by a beamed continuum source yields a TF and line profile that are qualitatively consistent with the observations. In this model, the clouds that produce the variable C IV emission lie within 12 lt-days of the central source, and the continuum radiation is confined to a wide biconical beam (semi-opening angle 35°-60°) with the observer viewing into the cone.

Document Type

Article

Publication Date

11-10-1995

Notes/Citation Information

Published in The Astrophysical Journal Letters, v. 453, no. 2, p. L87-L90.

© 1995. The American Astronomical Society. All rights reserved.

The copyright holder has granted permission for posting the article here.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1086/309750

Share

COinS